

	NOV SARA ENGINEERING SPECIFICATION	
	SECTION SES 26-324	
	ISSUE "B"	Rev "1"
	EFF. DATE 20.10.2011	Page 1 of 3

AISI 4140 LOW ALLOY STEEL FORGED OR WROUGHT
75,000 MINIMUM YIELD FOR HIGH PRESSURE HAMMER UNION
(FOR STANDARD SERVICE) IMPACT TESTED
AT -29 ° C (-20 ° F) OR LOWER AVERAGE IMPACT VALUE 20 J

1.0 SCOPE

1.1 AISI 4140 low alloy steel forgings and wrought shapes heat-treated to 75,000 PSI minimum yield strength for standard service.

1.2 Product forms covered by this specification are closed die. Open die and ring forgings, bar and mill shapes.

2.0 REQUIREMENTS

2.1 The requirements of specification S.E.S. 26-590 shall apply in addition to the following specific requirements.

2.1.a) Chemical composition: Chemical composition limits are listed below. An analysis of each heat of steel be made by the manufacturer, preferably from a ladle sample taken at or near the time of pouring. The listed elements shall be reported in weight percent. Reporting of residual elements is not required, but total residuals must not exceed 1%.

ELEMENT	COMPOSITION	ELEMENT	COMPOSITION
CARBON (C)	0.38 - 0.43	SILICON (Si).	0.15- 0.30
MANGANESE (Mn).	0.75 – 1.00	CHROMIUM	0.80-1.10
PHOSPHORUS (P).	0.025 max.	MOLYBDENUM	0.15 – 0.25
SULPHUR (S).	0.025 max.		

2.1.b) Mechanical Properties: Mechanical property requirements are listed below. Each heat shall be tested and the listed mechanical properties shall be reported.

MECHANICAL PROPERTIES	RANGE
TENSILE STRENGTH	95,000 PSI (655 MPa) Min.
YIELD STRENGTH	75,000 PSI (517 MPa) Min.
ELONGATION IN 2" Gage Length	18% Min.
REDUCTION IN AREA	35% Min.
BRINELL HARDNESS	207-237 BHN (16-22 HRC)

NOV SARA ENGINEERING SPECIFICATION**SECTION SES 26-324****ISSUE "B"****Rev "1"****EFF. DATE 20.10.2011****Page 2 of 3**

2.1.c) Melt practice: The steel shall be made by the electric furnace process with subsequent vacuum treatment (EFVD). Steel made by vacuum induction melting (VIM) or vacuum arc remelting (VAC), or electroslag remelting (ESR) or electric arc furnace (EAF) shall also be acceptable.

2.1.d) Condition: All product shall be normalized (N) then quenched (Q) and tempered (T) (N+Q&T), except that normalizing shall not be required for the following:

2.1.d.1 forgings with a forging reduction of 4:1 or greater;

2.1.d.2 Rolled tubing or extruded tubing with a wall thickness of 3" or less;

2.1.d.3 Bar stock with a diameter of 8" or less;

2.1.e) Heat Treatment :

PROCESS	ATMOSPHERE/MEDIA	TEMPERATURE	TIME AT TEMPERATURE
Normalized	Air or Nitrogen	1600 °F (871 °C) minimum.	½ hour per inch of maximum through thickness. One hour minimum.

Still air cool to below 400 °F (204 °C) before further processing

Austenitize (See note 2.1.e.1)	Air or Nitrogen	1575 °F (857 °C) minimum	½ hour per inch of maximum through thickness. One hour minimum.
-----------------------------------	-----------------	-----------------------------	---

Quench	Water	100 °F (38 °C) maximum before quenching 120 °F (49 °C) maximum after quenching	
	Polymer	50 °F (10 °C) minimum before quenching (See note 2.1.f.2)	
	Oil	-----	

Temper	Air or Nitrogen	1200 °F (649 °C) Minimum.	3/4 hour per inch of maximum through thickness. One hour Minimum.
--------	-----------------	------------------------------	---

Slow cool to room temperature

	NOV SARA ENGINEERING SPECIFICATION	
	SECTION SES 26-324	
	ISSUE "B"	Rev "1"
	EFF. DATE 20.10.2011	Page 3 of 3

Note 2.1.e.1: The Austenitizing temperature shall be less than the normalizing temperature.

Note 2.1.e.2: The minimum start temperature of 50 °F (10 °C) for oil and polymer Quenchant shall be followed except when a lower minimum start temperature is permitted for a specific quenchant by the quenchant manufacturer. The start temperature shall be documented for all products.

2.1.f) Continuous Furnace Heat Treatment: Continuous furnace heat treatment shall be an acceptable alternative to conventional batch-type heat treatment for bars with diameters of 8 inches (203mm) or less. The following parameters shall be followed and reported in accordance with SES-26-590.

Minimum bar temperature exiting final zone of austenitizing furnace 1525 °F (829 °C)

Minimum time in austenitizing furnace 5 minutes (see note 2.1.g.1)

Minimum bar temperature exiting final zone of temperature furnace 1150 °F (621 °C)

Minimum time in tempering furnace 5 minutes (see note 2.1.g.1)

Minimum temperature of quench water 120 °F (49 °C)

Note 2.1.f.1: Continuous furnaces consist of several different temperature zones through which the bar travels. The zone temperatures in the austenitizing furnace are chosen so as to heat the bar to a completely austenitic in a relatively short time. The bar is then spray quenched before entering the tempering. Zone temperatures in the tempering furnace are chosen to produce the desired tempering effect, again in a relatively short time. The time spent in the austenitizing and tempering furnaces depends primarily upon the length of the furnace and the travel speed. Travel speed varies according to the diameter of the bar. The time in each furnace shall be sufficient to attain the desired mechanical properties and to produce a microstructure to that obtained in a conventional quench-and-temper heat treatment.