

	SARA SAE ENGINEERING SPECIFICATION		
SECTION SES - 26 - 752			
ISSUE "A"	REV. "1"		
EFF. DATE : 20.10.2011	Page	1 of 12	

SCOPE

This procedure covers the "in-plant" engineering test requirements per API 6A, 20th Edition, for new SARA SAE Chokes - Type "MP", "XP", and "B-." All the API 6A test requirements, quality control, and general performance for choke assemblies are included.

QUALITY CONTROL TEST REQUIREMENTS

Note on Pressure Stabilization:

Pressure shall be considered stabilized when the change rate is no more than 5% of the testing pressure per hour or 500 psi/hour (3.5 MPa/hour), whichever is less. (See Table 4 for shorter holding period).

1.0 HYDROSTATIC PRESSURE TEST

1.1 Hydrostatic Test Pressures

- 1.1.1 The hydrostatic test pressure shall be determined by the rated working pressure of the choke assembly (see Tables 1A and 1B). For chokes with dissimilar inlet and outlet connections see 1.1.2.
- 1.1.2 For a choke with end or outlet connections having different working pressures, a "blind seat shall be utilized such that the inlet portion of the choke (from inlet connection to seat/body seal) is tested at the appropriate pressure for the inlet connection. Test the remainder of the choke (seat body seal to outlet connection) at the appropriate pressure for the outlet connection.
- 1.2 Hydrostatic testing shall be completed prior to painting; however, painted valve assemblies from stock may be retested without removing the paint.
- 1.3 Pressure holding periods shall not start until the test pressure has been reached and allowed to stabilize. External surfaces shall be dried thoroughly before testing.

1.4 Hydrostatic Body Test Procedure

- 1.4.1 Assemble the choke complete. Note that testing per 1.1.2 above, the choke must be re-assembled following hydrostatic test.
- 1.4.2 Prepare inlet and outlet connections utilizing appropriate size ring joint gaskets and suitable blind flanges. Refer to Tables 2 and 3 for ring gasket size and/or SARA SAE part numbers.
- 1.4.3 The choke is to be connected with other test apparatus as shown in Figure 1.

SARA SAE ENGINEERING SPECIFICATION

SECTION SES - 26 - 752

ISSUE "A"

REV. "1"

EFF. DATE : 20.10.2011

Page 2 of 12

- 1.4.4 Open the choke and set the plug in the one-half open position (if applicable).
- 1.4.5 Tap water or water with additives shall be used as the testing fluid.
- 1.4.6 Fill choke body with the testing fluid. Make sure all air is expelled from the body. Chokes shall normally be tested with the inlet connection facing up to facilitate release of entrapped air.
- 1.4.7 For PSL 3 and 4, place chart, identified with serial number and/or factory order number, on recorder or other device.
- 1.4.8 Place safety test bell, or other protective device, over the choke.
- 1.4.9 Pressurize to shell test pressure as determined by choke assembly working pressure or end connections per Section 1.1. Hold pressure for a minimum period of three (3) minutes. Check for leaks. Bleed to zero pressure.
- 1.4.10 Re-pressurize to shell test pressure as in Section 1.4.9. For non-PSL product and PSL 1 and 2, hold for a minimum period of three (3) minutes. For PSL 3 and 4, hold for a minimum of fifteen (15) minutes. Check for leaks. Bleed to zero pressure.

- 1.5 For PSL 3G and PSL 4, continue to Section 2.0, "Gas Body Test."
- 1.6 The assembly is acceptable if there is no visible evidence of leakage during each holding period.

2.0 GAS BODY TEST (PSL 3G and 4)

2.1 Test Pressures

- 2.1.1 The test pressure shall be the rated working pressure for the assembly (see Table 1).
- 2.1.2 Chokes with end or outlet connections having different working pressures, a "blind" seat shall be utilized such that the inlet portion of the choke (from inlet connection to seat/body seal) is tested at the appropriate pressure for the inlet connection. Test the remainder of the choke (seat body seal to outlet connection) at the appropriate pressure for the outlet connection.

- 2.2 The pressure holding period shall not start until the test pressure has been reached and allowed to stabilize.

	SARA SAE ENGINEERING SPECIFICATION	
	SECTION SES - 26 - 752	
	ISSUE "A"	REV. "1"
	EFF. DATE : 20.10.2011	Page 3 of 12

- 2.3 The test shall be conducted at ambient temperature.
- 2.4 The test medium shall be nitrogen.
- 2.5 The test shall be conducted with the assembly completely submerged in a water bath.

2.6 Test Procedure

- 2.6.1 The choke is to be connected with other test apparatus as shown in Figure 1.
- 2.6.2 Blind flanges or other suitable end closures are to be used with the valve end or outlet connections.
- 2.6.3 Open choke and set the plug in the one-half open position if applicable.
- 2.6.4 Place chart, identified with serial number and/or factory order number, on recorder (can be same chart as in 1.4.7).
- 2.6.5 Place safety test bell, or other protective device, over component.
- 2.6.6 Pressurize to test pressure as determined by the working pressure of the choke assembly or end connections per Section 2.1. Hold for a minimum period of fifteen (15) minutes. Check for leaks. Bleed to zero.
- 2.6.7 The assembly is acceptable if there are no visible bubbles in the water bath during the holding period.

3.0 SEAT CLOSURE TESTS

- 3.1 The seat closure test is performed only when specified on the sales order, and one of the closure tightness levels shall be specified:
 - 3.1.1 Class IV (four), where the allowable leakage shall not exceed 0.01% of the trim's rated Cv. See the computation in Table 5.

Or

- 3.1.2 Class V (five), where the allowable leakage shall not exceed 0.0005 ml/min/inch of trim size/differential pressure. See the computation in Table 6.

	SARA SAE ENGINEERING SPECIFICATION	
SECTION SES - 26 - 752		
ISSUE "A"	REV. "1"	
EFF. DATE : 20.10.2011	Page	4 of 12

3.2 Class IV Test Procedure

- 3.2.1 The Class IV test shall be conducted only after a successful hydrostatic shell test.
- 3.2.2 The test fluid shall be tap water or water with additives. Steps shall be taken to assure that the entire choke body from inlet to outlet is filled with the test fluid and that air is not present in the outlet chamber.
- 3.2.3 The test pressure shall be 45 to 60 psig.
- 3.2.4 The choke shall be tested in the fully closed position. The test pressure shall be applied to the inlet side of the choke. Leakage is monitored and collected at the outlet connection. A suitable graduated container shall be used to determine the total amount of leakage collected over the test interval.
- 3.2.5 The test interval shall be a minimum of three minutes, or of sufficient duration to accurately determine the leakage rate of fluid through the choke.
- 3.2.6 The test shall be considered successful if the collected leakage averaged over the test interval does not exceed the values listed in Table 5.

3.3 Class V Test Procedure

- 3.3.1 The Class V test shall be conducted only after a successful hydrostatic shell test.
- 3.3.2 The test fluid shall be tap water or water with additives. Steps shall be taken to assure that the entire choke body from inlet to outlet is filled with the test fluid and that air is not present in the outlet chamber.
- 3.3.3 The test pressure shall be the working pressure of the choke.
- 3.3.4 The choke shall be tested in the fully closed position.
- 3.3.5 Test pressure shall be applied to the inlet side of the choke. Leakage is monitored and collected at the outlet connection. A suitable graduated container shall be used to determine the total amount of leakage collected over the test interval.
- 3.3.6 The test interval shall be a minimum of three minutes, or of sufficient duration to accurately determine the leakage rate of fluid through the choke.

SARA SAE ENGINEERING SPECIFICATION**SECTION SES - 26 - 752****ISSUE "A"****REV. "1"****EFF. DATE : 20.10.2011****Page 5 of 12**

3.3.7 Given the operating pressure of the choke, the corresponding leakage rates in Table 6 are multiplied by the trim size of the choke in order to determine the maximum allowable leakage.

3.3.8 The test shall be considered successful if the collected leakage averaged over the test interval does not exceed product of the trim size in inches times the allowable leakage for that operating pressure.

SARA SAE ENGINEERING SPECIFICATION**SECTION SES - 26 - 752****ISSUE "A"****REV. "1"****EFF. DATE : 20.10.2011****Page 6 of 12**

TABLE No. 1A
PRESSURE TABLE FOR FLANGE OR
HUB CONNECTIONS API RATINGS

WORKING PRESSURE (+5%, -0%) PSI (MPa)	SHELL TEST PRESSURE (+5%, -0%) PSI (MPa)
1,000 (6.9)	+50 (0.3), -0
2,000 (13.8)	+100 (0.7), -0
3,000 (20.7)	+150 (1.0), -0
5,000 (34.5)	+250 (1.7), -0
10,000 (69.0)	+500(3.5), -0
15,000 (103.4)	+750 (5.2), -0
20,000(137.9)	+1000(6.9), -0
	2,000 (13.8)
	4,000 (27.6)
	6,000 (41.4)
	7,500 (51.7)
	15,000 (103.4)
	22,500 (155.0)
	30000(206.7)
	+100 (0.7), -0
	+200 (1.4), -0
	+300 (2.1), -0
	+375 (2.6), -0
	+750 (5.2), -0
	+1125 (7.8), -0
	+1500(10.33),-0

TABLE No. 1B
PRESSURE TABLE FOR FLANGED
CONNECTIONS ANSI RATINGS

WORKING PRESSURE PSI (MPa)	SHELL TEST PRESSURE PSI (MPa) MINIMUM
ANSI 600 -- 1480 (10.2)	2,225 (15.3)
ANSI 900 -- 2250 (15.5)	3,375 (23.2)
ANSI 1500 -- 3750 (25.8)	5,625 (38.8)
ANSI 2500 -- 6250 (43.1)	9,375 (64.6)

Note that the values above are for Group 1 steel. Pressure ratings and test pressures will vary for other groups. Refer to the sales order for specific test pressures.

SARA SAE ENGINEERING SPECIFICATION

SECTION SES - 26 - 752

ISSUE "A"

REV. "1"

EFF. DATE : 20.10.2011

Page 7 of 12

TABLE No. 2
R & RX RING JOINT GASKETS FOR TESTING

Flange		R Low Carbon Steel Cadmium Plated		RX Low Carbon Steel Cadmium	
Working Pressure Psi (MPa)	Nominal Size in. (mm)	R or RX Number	Oval	Octagon	
2000 (13.8)	2-1/16 (52)	23	050192	050164	050376
3000 (20.7), 5000 (34.5)	2-1/16 (52)	24	050193	050165	050380
2000 (13.8)	2-9/16 (65)	26	050194	050166	050381
3000 (20.7), 5000 (34.5)	2-9/16 (65)	27	050195	050167	050382
2000 (13.8), 3000 (20.7)	3-1/8 (79)	31	050196	050168	050383
5000 (34.5)	3-1/8 (79)	35	050197	050169	050384
2000 (13.8), 3000 (20.7)	4-1/16 (103)	37	050198	050170	050385
5000 (34.5)	4-1/16 (103)	39	050199	050171	050386
3000 (20.7)	5-1/8 (130)	41	050200	050172	050387
5000 (34.5)	5-1/8 (130)	44	--	--	050388
2000 (13.8), 3000 (20.7)	7-1/16 (179)	45	050201	050173	050373
5000 (34.5)	7-1/16 (179)	46	050202	050174	050389

TABLE No. 3

Flange		BX Number	Low Carbon Steel Cadmium Plated
Working Pressure Psi (MPa)	Nominal Size in. (mm)		
10,000 (69.0), 15,000 (103.4)	1-13/16 (46)	151	050352
20,000 (138.0)	2-1/16 (52)	152	050353
	2-9/16 (65)	153	050354
	3-1/16 (78)	154	050355
	4-1/16 (103)	155	050366
	7-1/16 (179)	156	050356

SARA SAE ENGINEERING SPECIFICATION

SECTION SES - 26 - 752

ISSUE "A"

REV. "1"

EFF. DATE : 20.10.2011

Page 8 of 12

TABLE No. 4
ALLOWABLE CHANGE RATE FOR PRESSURE STABILIZATION

TESTING PRESSURE PSI (MPa)	ALLOWABLE CHANGE RATE (5% of Testing Pressure per Hour or 500 psi (3.5 MPa) per Hour)			
	PER HOUR Psi (MPa)	5 MIN. psi (MPa)	10 MIN. psi (MPa)	15 MIN. psi (MPa)
1,000 (6.9)	-50 (-0.3)	-5 (-0.03)	-9 (-0.06)	-13 (-0.09)
2,000 (13.8)	-100 (-0.7)	-9 (-0.06)	-17 (-0.12)	-25 (-0.17)
3,000 (20.7)	-150 (-1.0)	-13 (-0.09)	-25 (-0.17)	-38 (-0.26)
4,000 (27.6)	-200 (-1.4)	-17 (-0.12)	-34 (-0.23)	-50 (-0.34)
5,000 (34.5)	-250 (-1.7)	-21 (-0.14)	-42 (-0.29)	-63 (-0.43)
6,000 (41.4)	-300 (-2.1)	-25 (-0.17)	-50 (-0.34)	-75 (-0.52)
10,000 (69.0)	-500 (-3.5)	-42 (-0.29)	-83 (-0.57)	-125 (-0.86)
15,000 (103.4)	-500 (-3.5)	-42 (-0.29)	-83 (-0.57)	-125 (-0.86)
22,500 (155.0)	-500 (-3.5)	-42 (-0.29)	-83 (-0.57)	-125 (-0.86)
30,000(206.7)	-500(-3.5)	-42(-0.29)	-83(-0.57)	-125(-0.86)

SARA SAE ENGINEERING SPECIFICATION**SECTION SES - 26 - 752****ISSUE "A"****REV. "1"****EFF. DATE : 20.10.2011****Page 9 of 12**

TABLE No. 5
CLASS IV ALLOWABLE LEAKAGE RATES

Trim Orifice Size (Cv)	MAXIMUM ALLOWABLE LEAKAGE ml/min
.25" (1.5)	.567
0.50" (6.0)	2.27
0.75" (13.0)	4.92
1.0"(25.0)	9.46
1.5"(50)	18.92
2.0"(90)	34.06
2.5"(150)	56.78
3.0"(190)	71.92
3.25"(TBA)	TBA
3.5"(270)	102.19
4.5"(450)	170.34
6.0"(765)	289.55
6.5"(890)	336.86

SARA SAE ENGINEERING SPECIFICATION

SECTION SES - 26 - 752

ISSUE "A"

REV. "1"

EFF. DATE : 20.10.2011

Page 10 of 12

TABLE No. 6
CLASS V ALLOWABLE LEAKAGE RATES

OPERATING PRESSURE	MAXIMUM ALLOWABLE LEAKAGE PER INCH OF TRIM SIZE ml/min
1,000 (6.9)	0.5
ANSI 600 -- 1480 (10.2)	0.74
2,000 (13.8)	1.0
ANSI 900 -- 2250 (15.5)	1.125
3,000 (20.7)	1.50
ANSI 1500 -- 3750 (25.8)	1.875
4,000 (27.6)	2.0
5,000 (34.5)	2.50
6,000 (41.4)	3.00
ANSI 2500 -- 6250 (43.1)	3.125
10,000 (69.0)	5.0
15,000 (103.4)	7.5
22,500 (155.0)	11.25
30,000(206.7)	15.00

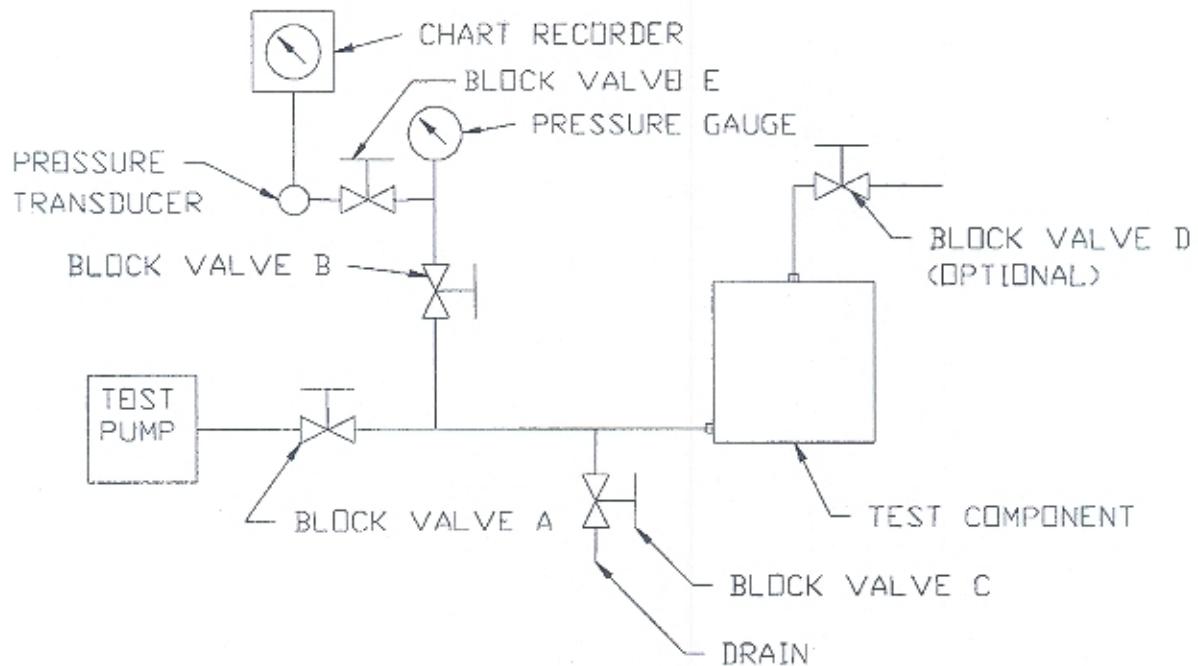


FIGURE No. 1

SARA SAE ENGINEERING SPECIFICATION

SECTION SES - 26 - 752

ISSUE "A"

EFF. DATE : 20.10.2011

REV. "1"

Page 12 of 12

Choke Assembly & Test Record
Certificate of Choke Testing

Customer: _____

Sales Order: _____

Date: _____

W/O #: _____

Part #: _____

Description: _____

Serial No(s): _____

PSL Level: _____ Qty: _____ Test Procedure: _____ Test Record

PSL Level: _____ Qty: _____ Test Procedure: _____ Test Record _____

Recording Device No.: _____ (Gauge or Chart Recorder)

Description	Test Pressure (minimum)	Test Duration (minutes)
Primary Hydrostatic Shell Test		
Secondary Hydrostatic Shell Test		
Seat Hydrostatic Test		
Inlet Shell Test		
Outlet Shell Test		

Test Conducted By: _____ Date: _____

Assembly Supervisor: _____ Date: _____

Customer Witness(es): _____ Date: _____

Quality Control:

